Report No. 67 Chahlis, Washington

Page-1

May 22, 1996 Pinelandia & Bayville Labs.

Crop Formstion: Chabilis, Vesbington 1965

Laboratory Code: KS-03-35

<u>Material:</u> Oat stems and heads, Avena sativa

<u>Formation:</u> Ovoid formation (approximately 18 x 20 ft.) at Chahlis, Washington, formed late July or early August, 1995.

Sampled: by ilyes and Mary Ellen Frister on Aug. 20,1995

Note: The farmer designated this formation as "wind damage".

SUMMARY OF RESEARCH FINDINGS:

- a)- a total of four sample sets were collected from downed and four from upright controls.
- b)- there were no apparent differences between the individual sample sets within the formation or within the sets from the controls.
- c)- there were however significant differences between the formation samples and the controls.
- d)- because of the minimal degree of sampling the node length (N1) data were summarized as a statistical population and are summarized below for both the apical and penultimate node regions.

	A-apical		P-penultimate		Expulsion	
<u>Samples</u>	ave.	<u>s.d.</u>	ave.	s.d.	Cavities	N-plants
Controls	1.62	0.3 0	1.81	0.27	0%	30
Formation	3.72	0.64	2.53	0. 4 0	18.2%	22

COMMENTS

- 1)- the A-node length expansion of +130% and the P-node of +40% are statistically significant at the P<0.05 level.
- 2)- the lower degree of node expansion at the P-node region is as previously explained, due to the more mature, tougher tissue at the P-node level.
- 3)- the pronounced node expansion and the high level of expulsion cavities clearly take this formation out of the category of "wind damage".
- 4)- the level of tissue damage approaches that found in the record "Blue Ball" formation (report No.51).

W.C. Levengood Pinelandia Biophysical Lab.

John A. Burke Am-Tech. Laboratory